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In this study, an empirical mode decomposition (EMD) technique has been applied for EEG signals to 
identify a neurological disease state qualified as encephalopathy. The EMD technique is an efficient 
method for decomposing nonstationary and nonlinear signals, which makes it suitable for biosignal 
processing. This technique generates various components of the signal called intrinsic mode functions 
(IMFs) whose features are examined for the diagnosis of the disease. We found significant differences 
between the healthy and patient groups for both statistical and nonlinear parameters of IMFs of the 
recorded EEGs, which makes those suitable for the diagnosis of encephalopathy. Statistical values, 
namely minimum, maximum, mean, and standard deviation, and nonlinear parameters, namely 
approximate entropy and sample entropy of the IMFs, were calculated. Both these features were fed 
to a Support Vector Machine (SVM) classifier, and their performance parameters were evaluated. It is 
concluded that statistical parameters, as well as nonlinear parameters of the EEG IMFs, are prospective 
potential features for automated diagnosis of encephalopathy.
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INTRODUCTION

Electroencephalograms are highly complex 
signals detailing the functioning of the brain. Highly 
useful information for the diagnosis of neurological 
disorders is contained in those signals, but they 
are not currently utilized to their full potential 
in clinical scenarios. Various signal processing 
techniques have been tested to find if they give 
better results for analyzing EEGs. Signal processing 
engineers apply various frequency-domain and time-
frequency-domain techniques for studying various 
biomedical signals. Though these methods could 
extract much greater volumes of information than 
those obtained by visual inspection, EEGs could 
not be studied completely using these techniques. 
So, another stream of analysis emerged in EEG 
signal processing, namely, nonlinear analysis. This 
approach to a greater extent considers the complex 

nature of the brain and the nonlinear and chaotic 
nature of EEGs. Much more hidden information 
could be revealed from EEG signals using nonlinear 
techniques. 

Empirical mode decomposition (EMD) is a 
nonlinear decomposition technique [1]. It is an 
adaptive and data-dependent method that does not 
require assumptions of linearity and stationarity [2]. 
Such a situation makes this approach more adequate 
for EEG analysis. The local properties of the signal 
are extracted very well using this technique [1]. 

EMD is a signal decomposition technique utilized 
in nonstationary and nonlinear signals to generate 
a set of symmetric, amplitude- and frequency-
modulated (AM-FM) components called intrinsic 
mode functions (IMFs) [3,4].

EMD has been reported as an efficient method for 
analyzing EEG signals considering their nonlinear 
and nonstationary nature. Pachori [5] utilized the 
EMD technique to classify seizure and seizure-free 
EEG signals by comparing the mean frequency of 
each intrinsic mode functions (IMF) and using the 
area measure of each calculated IMF to discriminate 
epilepsy cases from normal healthy controls [6].

Various features of the IMFs were utilized for 
the diagnosis of various neurological disorders. Our 
study aimed at exploring the potential of the EMD 
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technique for the diagnosis of encephalopathy; the 
latter is a disease state/disorder of the brain due to 
metabolic problems, infections, or malfunctioning 
of some other parts  of the body. Hepatic 
encephalopathy occurs due to liver diseases, and 
uremic encephalopathy accompanies renal diseases. 
Thus, encephalopathy can be considered as a 
secondary neurological disease, as it occurs due to 
some other primary disorders or diseases. 

The objective of our study was to apply EMD for 
EEGs of encephalopathy cases and normal EEGs 
via generation of the IMFs. Statistical parameters, 
namely minimum, maximum, mean, and standard 
deviation (s.d.), were calculated for the IMFs of 
each EEG epoch. Entropies (approximate entropy 
and sample entropy) were also calculated for each 
IMF. Both these feature sets were utilized to classify 
between the EEGs of the normal and patient groups 
using a support vector machine (SVM) classifier, 
and their performance parameters were compared. 

METHODS

In our study, we have analyzed 150 EEG 
epochs of 20 patients with diagnosed metabolic 
encephalopathy and 125 EEG epochs of 15 normal 
healthy subjects. The data were collected in the 
EEG lab of the Neurology Department, Government 
Medical College, Thiruvananthapuram, Kerala, 
India. Patients with brain structural pathology, 
infections of the CNS, cerebral vascular insult 
(confirmed by neuroimaging or other investigations), 
with a clinical picture suggestive of metabolic 
encephalopathy but without obvious metabolic 
disturbances detected in the necessary biochemical 
investigations, and metabolic encephalopathy 
occurring against the background of some other 

neurological illness causing cognitive dysfunction 
or a degenerative condition were excluded from the 
patient sampling. Patients who came with a single 
episode of syncopes, but were clinically normal and 
having normal brain imaging, where seizures and 
structural lesions were ruled out, have been enrolled 
as normal healthy controls.

Recording of EEGs was performed using a widely 
applied average reference montage in the Nicolet 
EEG machine (USA) using NicVue v.3.0 software. 
The 10–20 electrode system was adopted for the 
EEG tracing. The sampling rate was set to 500 sec–1.  
Twelve-sec-long EEG epochs were saved in text 
files (ASCII format).The noise-free segments free 
from the effects of eye movements or other muscle 
contraction artifacts were selected. 

EEG Analysis. The outline of the work is depicted 
in Fig. 1. The EEG signals saved as 12-sec-long epochs 
were first preprocessed using low-pass filtering and a 
total variation denoising technique. The details will 
be described below. After preprocessing, the clean 
EEG epochs were empirical mode decomposed to get 
the IMFs. The first four IMFs of EEG epochs were 
processed in this study for the sake of convenience, 
as we are exploring the possibility to utilizing those 
features for the diagnosis of encephalopathy. The 
statistical parameters, namely minimum, maximum, 
means, and s.d. of four IMFs were computed, i.e., 
16 statistical features were obtained. Entropies, i.e., 
sample entropy and approximate entropy of the first 
four IMFs, were also calculated; thus, eight features 
were obtained. An SVM classifier was implemented 
to differentiate EEGs of encephalopathy patients 
from normal EEGs of healthy subjects. Two feature 
sets were utilized in our study for classification: (i) 
statistical parameters, i.e., minimum, maximum, 
mean, and s.d. of each IMF, and (ii) approximate 
entropy and sample entropy of each IMF.

EEG 
Epochs Pre-processing

ApEn and 
SampEn

SVM 
Classifier

Max, Min,  
Mean, and  

s.d.

EMD
IMFs

Calculating performance 
parameters to find the 

feature set suitable  
for the best classificalion

F i g. 1. Block diagram of the proposed work.

Diagnosis of Encephalopathy Based on EEG Decomposition 



280 J. E. Jacob et al.

The performance parameters of the classifier in 
both cases were analyzed and compared.

Pre-processing. This study used simultaneous 
low-pass filtering and total variation denoising 
filtering (LPF-TVD) for preprocessing our EEG 
signals [7]. Linear-time invariant low-pass filtering 
was combined with the total variation denoising 
technique utilized for sparse signals in this method. 
While low-pass filtering allows signal components 
to be filtered up to a maximum frequency 
component, say fm, the total variation denoising 
technique is based on addressing the TVD as an 
optimization problem and minimizing a predefined 
cost function. The cost function can be minimized 
using the majorization-minimization algorithm 
given by Figuiredo et al. [8].

Empirical-Mode Decomposition (EMD). The 
concept was developed by Huang et al. [1] for 
analyzing nonstationary and nonlinear signals. As 
biomedical signals have these characteristics, this 
technique was utilized in this study for the EEG 
analysis. This technique decomposes an input 
signal into a finite number of subparts called, as 
was mentioned above, intrinsic mode functions 
(IMFs). Different features of these IMFs can then 
be analyzed instead of analyzing the signal as a  
whole.

The EMD technique decomposes the signal 
into various IMFs, in which those decomposed 
components obey the two conditions [9]: (i) the 
number of zero crossings and extremas must be the 
same or differ by almost 1; (ii) at all points, the 
mean value of an envelope formed by local maxima 
and that of local minima should be zero.

The major steps in EMD are the following [6,10]: 
(i) Find the number of extreme points (both maxima 
and minima) in the signal s(t); (ii) generate the 
upper envelope eup(t) and lower envelope elow(t) by 
connecting maxima and minima separately using a 
cubic spline method; (iii). then the mean is calculated 
as μ(t) = (eup(t) + elow(t))/2; (iv) IMF should have this 
mean value as zero. Define s´(t) = s(t) – μ(t) to get 
the detail of the signal; (v) check if s´(t) is an IMF by 
checking the two conditions described earlier, and (vi) 
repeat the above steps till an IMF is generated.

When an IMF is obtained, IMF1 = i1(t) = h1(t). 
A residue r1(t) is taken as the signal after 

subtracting the first IMF, i.e., r1(t) = s(t) – i1(t). 
After this, the residue r1(t) is taken as the next 

signal, and the above steps are repeated to get the rest 
of the IMFs. This is continued till the final residue 
is a constant. Figure 2 shows the IMFs generated by 
the empirical mode decomposition of normal EEG 
and EEG of patients with encephalopathy.
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Feature Extraction. Andrade et al. [11] and Lima 
et al. [12] described the early works of applying the 
EMD technique to brain signals. Various features 
of the EEG IMFs were extracted for classifying 
between the disease and normal groups [3, 5, 6, 
13–16]. Orosco et al. [17] calculated the energy of 
IMFs of EEG in epileptic patients and concluded that 
these indices can be utilized for the classification of 
epilepsy, though the sensitivity value for classifying 
was lower in the respective group. Djemili et al. [4] 
utilized statistical parameters, namely minimum 
value, maximum value, mean, and s.d., of each of 
the four IMFs extracted from the EEG signal for 
the diagnosis of epilepsy. The weighted frequency 
of each IMF was studied by Oweis et al. [18], and 
this index was also identified as a good feature 
for classifying the ictal state with seizures from 
normal cases. Bajaj et al. [19] utilized another 
feature called an instantaneous area of the IMFs to 
detect focal temporal lobe epilepsy. Other features, 
namely the coefficient of variation and fluctuation 
index of IMFs, were utilized by Li et al. [14] for the 
diagnosis of this disease.

In our study, we have calculated the above-
mentioned statistical parameters (min, max, mean, 
and s.d.) for the first four IMFs, as was done in 
seizure classification by Djemili et al. [4], but we also 
estimated the entropies for the IMFs. Sharma et al.  
[20] have applied the entropy on the IMFs of focal 
EEGs and reported significant results for classifying 
focal EEG signals from nonfocal ones. Both 
these feature sets were given to the classifier for 
distinguishing the normal and disease groups, and 
their performance was compared.

Feature Extraction. In thermodynamics, the 
term entropy is defined as the measure of disorder 
or randomness in a system. The entropy can also 
be considered as the extent of complexity of the 
system. 

Approximate Entropy. The approximate entropy 
gives the measure of randomness and complexity 
of the system. This nonlinear feature was proposed 
by Pincus [21]. It is calculated as the logarithmic 
likelihood that two close sequences will remain 
close to each other after the next increment. A 
higher value of the approximate entropy indicates 
higher random behavior and more unpredictability 
[22]. The approximate entropy gives a non-
negative number to a time series based on which 
its complexity can be measured. It can be applied 
to relatively short and noisy data. The Ci

m (r) is 

the correlation integral, and N is the total number 
of data points. The approximate entropy can be 
calculated from the equation
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Sample Entropy. The sample entropy is defined 
as the negative natural logarithm of the conditional 
probability that two sequences, which are similar for 
m points, remain similar to each other at the next 
point, where m is the embedding dimension [23]. 
Compared to the approximate entropy, the sample 
entropy is more robust to noise and is largely 
independent of the data series length. A lower 
value of the sample entropy indicates a higher self-
similarity in the time series. The sample entropy can 
be calculated from the equation

( ) ( ) ( ) ( )m rm 1SampEn m, r , N ln[C r / C ] ,    3   += −

where Cm(r)  is the probability that two sequences 
will match for m points, and Cm+1(r) is the probability 
that two sequences will match for m + 1 points.

The selfsimilarity of the time series can be 
measured using approximate entropies and sample 
entropies. Sharma et al. [20] have reported that 
entropies of the EEG IMFs can be utilized for 
discriminating between focal and nonfocal EEGs. 
Martis et al. [2].also reported the application of the 
spectral entropy of the EEG IMFs to the diagnosis 
of epilepsy.

 RESULTS AND DISCUSSION

The EEG signals of both groups, i.e., encepha-
lopathy patients and normal healthy controls, were 
decomposed using EMD to generate the IMFs. 
The first four IMFs have been taken in the study 
for convenience (see Fig. 2). It is clearly seen 
that the frequency decreases after each level of 
decomposition. Figure 3 shows the distribution of 
entropy values for 30 EEG epochs of each of the 
patients with encephalopathy and of normal healthy 

(1)

(2)
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subjects. All the eight parameters, i.e., approximate 
entropies and sample entropies of the first four 
IMFs, were found to be significantly lower in the 
encephalopathy group (P < 0.01; independent t-test; 
Fig. 3). Similar results were reported in the analysis 
of EEGs of patients with Alzheimer’s disease using 
the same EMD method [24]. This can be due to 
the lower complexity of neuronal activity and the 
less complex neuron-to-neuron interactions under 
conditions of the disease state. Another important 
point noted in the entropy values of the IMFs is that 
these values decrease with increase in the levels of 
decomposition. The IMF1 has a higher value of both 
entropies when compared to that of the IMF2, and 
so on. 
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0.28
0.31
0.34
0.37
0.40
0.43
0.46
0.49
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0.61
0.64
0.67
0.70 ApEn IMF1

SampEn IMF1

SampEn IMF2

SampEn IMF3

SampEn IMF4

ApEn IMF2

ApEn IMF3

ApEn IMF4

F i g. 3. Comparison of the mean entropy values (ApEn and SampEn) of the first four EEG IMFs. 

T a b l e 1. Comparison of the Statistical Parameters of the First Four IMFs of EEG Epochs in the Two Groups
Group IMF1 IMF2 IMF3 IMF4 
Control (normal) -9.79, 9.73, 0.00, 2.28 -9.67, 9.68, -0.01, 2.78 -8.23, 8.24, 0.00, 2.55 -7.12, 6.99, 0.00, 2.09
Patient (encephalopathy) -6.41, 6.34, 0.01, 1.19 -11.16, 10.97, 0.00, 2.59 -13.42, 13.36, 0.01, 3.93 -16.66, 16.69, 0.04, 5.31

Footnote: In each IMF column, minimum, maximum, mean, and s.d. values are indicated

T a b l e 2. Comparison of the Entropy Values of the First Four IMFs of EEG Epochs in the Two Groups
Group IMF1 IMF2 IMF3 IMF4
Control (normal) 0.63, 0.58 0.57, 0.52 0.47, 0.42 0.31, 0.27
Patient (encephalopathy) 0.59, 0.53 0.51, 0.43 0.35, 0.30 0.21, 0.19

Footnote: In each IMF column, approximate entropy and sample entropy values are indicated.

T a b l e 3. Number of EEG Epochs Taken for Training and 
Testing

Encephalopathy Normal Total
Training 110 65 175
Testing 40 60 100

T a b l e 4. Performance Parameters of the SVM Classifier (%) 
for Different Feature Vectors Based on the Sub-Band Energies of 
EEG
Feature set taken  
for classification Sensitivity Specificity Accuracy

Statistical parameters  
of the IMFs 93.33 97.5 95

Entropies of the IMFs 98.33 85 93
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Based on the results obtained, we can understand 
that entropies of IMFs serve better than statistical 
parameters for classifying the two groups. 
Differences between all the eight features, namely 
ApEn and SampEn of four IMFs, were found 
significant in statistical comparisons (independent 
t-test). So, the clear ability of various features to 
distinguish between two examined groups has 
been found by this test. This test estimates the 
probability of the zero hypothesis, known as the 
P value, for each feature using the Student’s t-test 
[25]. The features were said to be significant if  
P < 0.001. All 16 statistical parameters were, 
however, insignificantly different in this test. We 
have implemented a Support Vector Machine (SVM) 
classifier for the diagnosis of encephalopathy based 
on the statistical parameters and entropies of the 
IMFs of EEG epochs. The SVM classifier has been 
employed in many studies related to EEG analysis 
for differentiation of EEGs of the disease cases 
from those of normal healthy subjects [26–29]. 
Both parameters can be utilized as a feature set for 
classifying EEGs of encephalopathy cases from that 
of normal healthy subjects. The details of the dataset 
utilized for classification are given in Table 3.

The performance parameters of the classifier 
given in Table 4 clearly show that both features, 
namely statistical parameters and entropies of the 
IMFs, are potential prospective parameters for 
classifying between the two groups. The accuracies 
of classification using both feature sets were found 
to be comparable. In the case of classification using 
statistical parameters, the feature set consisted 
of 16 features (minimum, maximum, mean, and 
s.d. for each of the four IMFs). In entropy-based 
classification, eight features were utilized, the 
approximate entropy and sample entropy, for four 
IMFs. 

We also analyzed the performance of the classifier 
based on features of each IMF and combinations 
of two IMFs. Table 5 gives the performance for 
the respective cases. We can say that the accuracy, 
sensitivity, and specificity have been found the 

highest for a combination of the features of IMF1 
and IMF4 together. This result is similar to that 
reported by Djemili et al. [4] in their comparable 
study, but with respect to epilepsy.

Thus, a method based on empirical mode 
decomposition (EMD) has been reinvestigated in our 
study for interpreting EEGs with respect to diagnosis 
of encephalopathy. This study was conducted on a 
set of EEGs of encephalopathy patients and normal 
healthy subjects (controls). After filtering, EEGs 
were decomposed into intrinsic-mode functions 
using empirical mode decomposition. The entropies 
of these IMFs were then calculated and used as 
features for the SVM classifier. The statistical 
parameters of IMFs were also used by the classifier 
for distinguishing between the two groups. This 
work may be extended for the diagnosis of other 
neurological diseases. The results showed that both 
statistical parameters and entropies of the IMFs of 
EEG epochs are potential prospective parameters 
for diagnosing encephalopathy cases based on EEG 
analysis. On comparing the features of various 
IMFs, it can be understood that the IMF1 and IMF4 
features together can yield the best performance 
parameters for classifying encephalopathy cases 
from normal healthy cases based on EEG. 

To the best of our knowledge, results of applying 
the EMD technique for EEG in the diagnosis of 
encephalopathy have not been reported so far. These 
results clearly show that the EMD technique can be 
an adequate and successful signal processing tool 
for evaluating encephalopathy, and both statistical 
parameters, as well as entropies, can be employed 
as features for the same. Authors have earlier 
reported the results of applying chaotic analysis 
technique[30] and also based on energies of EEG 
sub-bands for the diagnosis of encephalopathy  
[31].
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T a b l e 5. Performance Parameters of the SVM Classifier (%) Based on Features of the EEG IMFs 

IMF1 IMF2 IMF3 IMF4
IMF1 and 

IMF2

IMF1 and 
IMF3

IMF1 and 
IMF4

IMF2 and 
IMF3

IMF3 and 
IMF4

IMF2 and 
IMF4

Accuracy 86 73 90 91 80 95 97 91 95 93
Sensitivity 76.67 75 100 91.67 70 100 96.67 96.67 96.67 91.67
Specificity 100 70 75 90 95 87.5 97.5 82.5 92.5 95
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